Recovery of photosynthesis in sunflower after a period of low leaf water potential.

نویسنده

  • J S Boyer
چکیده

Photosynthesis was studied in sunflower plants subjected to 1 to 2 days of desiccation and then permitted to recover. The leaf water potential to which leaves returned after rewatering was dependent on the severity of desiccation and the evaporative conditions. Under moderately evaporative conditions, leaf water potential returned to predesiccation levels after 3 to 5 hours when desiccation was slight. Leaf water potentials remained below predesiccation levels for several days after rewatering when leaf water potentials decreased to -13 to -19 bars during desiccation. Leaf water potential showed no sign of recovery when leaf water potentials decreased to -20 bars or below during desiccation. The lack of full recovery of leaf water potential was attributable to increased resistance to water transport in the roots and stem. The resistance ultimately became large enough to result in death of the leaves because net water loss continued even after the soil had been rewatered.Measurements of photosynthesis were made at high light intensities, where stomatal aperture often affects photosynthesis, and at low light intensities, where the photochemical activity of the leaves limits photosynthesis. Providing leaf water potentials remained above -12 bars during the desiccation period and returned to predesiccation levels during recovery, photosynthesis under both low and high light paralleled the recovery in leaf water potential after rewatering. After desiccation to leaf water potentials below -12 bars, recovery was incomplete under high light and could be attributed to lack of full stomatal opening. Lack of full opening persisted for 3 days and showed no sign of eventual recovery even though leaf water potentials recovered fully. Under low light, however, recovery in photochemical activity was complete within 15 hours after desiccation to leaf water potentials as low as -17 bars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of oxygen evolution in chloroplasts isolated from leaves with low water potentials.

Chloroplasts were isolated from pea and sunflower leaves having various water potentials. Oxygen evolution by the chloroplasts was measured under identical conditions for all treatments with saturating light and with dichloroindophenol as oxidant. Evolution was inhibited when leaf water potentials were below -12 bars in pea and -8 bars in sunflower and the inhibition was proportional to leaf wa...

متن کامل

Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials.

Rates of photosynthesis, dark respiration, and leaf enlargement were studied in soil-grown corn (Zea mays), soybean (Glycine max), and sunflower (Helianthus annuus) plants at various leaf water potentials. As leaf water potentials decreased, leaf enlargement was inhibited earlier and more severely than photosynthesis or respiration. Except for low rates of enlargement, inhibition of leaf enlarg...

متن کامل

Nonstomatal inhibition of photosynthesis in sunflower at low leaf water potentials and high light intensities.

The inhibition of photosynthesis at low leaf water potentials was studied in soil-grown sunflower to determine the degree to which photosynthesis under high light was affected by stomatal and nonstomatal factors. Below leaf water potentials of -11 to -12 bars, rates of photosynthesis at high light intensities were insensitive to external concentrations of CO(2) between 200 and 400 microliters p...

متن کامل

Photosynthesis at low water potentials in sunflower: lack of photoinhibitory effects.

The losses in chloroplast capacity to fix CO(2) when photosynthesis is reduced at low leaf water potential (psi(1)) have been proposed to result from photoinhibition. We investigated this possibility in soil-grown sunflower (Helianthus annuus L. cv IS894) using gas exchange techniques to measure directly the influence of light during dehydration on the in situ chloroplast capacity to fix CO(2)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 47 6  شماره 

صفحات  -

تاریخ انتشار 1971